UPPER AND LOWER CROSSED SYNDROME: FIXING THE SLOUCH FOR BETTER HEALTH

Jordan Keys D.O. M.S.
August 21, 2017

Objectives

- By the end of this lecture, attendees will be able to:
 - Understand the mechanism by which the development of muscle imbalance occurs and the consequences of it.
 - Describe the patterns of muscle imbalance present in both upper and lower crossed syndrome.
 - Describe the associated joint dysfunctions and pain syndromes that develop as a result of the muscle imbalances present in upper and lower crossed syndrome.
 - Identify abnormal muscle firing patterns present in upper and lower crossed syndrome.
 - Identify a treatment plan for patients with upper and lower crossed syndrome.
Vladimir Janda M.D.

- Combined therapy and medicine in a hands on approach; one of the earliest to practice physical medicine and rehabilitation.
- Published more than 16 books and 200 papers.
- Emphasized that the sensorimotor system, composed of sensory system and motor system, could not be functionally divided. He emphasized the importance of proper proprioception.

Paradigm Shift in Musculoskeletal Medicine

- Structural

- Functional
Muscle Function

- **Intrinsic:**
 - Physiological
 - Biomechanical
 - Neuromuscular
- **Extrinsic:**
 - Made up of specific, purposeful and synergistic movements that integrate the three intrinsic systems.
- **Interdependent:**
 - Three views of intrinsic function are not dependent of one another but interdependent upon one another.

Muscle Balance

- Relative equality of muscle length or strength between an agonist and an antagonist; **this balance is necessary for normal movement and function.**
- Necessary because of reciprocal nature of human movement (opposing muscle groups must coordinate).
- **Muscle Imbalance:**
 - **Functional**
 - **Pathologic:**
 - When muscle imbalance **impairs function.**
 - Joint dysfunction and altered movement which results in pain.
 - Joint injury may either lead to muscle imbalance or be the result of muscle imbalance.
Muscle Imbalance Paradigms

- Biomechanical:
 - Repetitive movement and posture.
 - Joint motion is altered when a particular synergist becomes dominant at the expense of the other synergist.
 - Abnormal stresses on joints.
 - Treatment: Shortening the longer muscles and strengthening the weaker muscles.

- Neurological:
 - Muscles are predisposed to become imbalanced because of their role in motor function.
 - Certain muscles are prone towards tightness or shortness and others prone towards inhibition.
 - Natural reflexes present for balance and function.
 - Tonic vs. Phasic Muscles.

Muscle Imbalance

- Muscle Tightness:
 - Key factor in muscle imbalance.
 - Three important factors:
 - Muscle Length
 - Irritability Threshold
 - Altered Recruitment

- Muscle Weakness:
 - Neuroflexive factors for increased tension:
 - Reciprocal Inhibition: Inhibited by tight antagonist.
 - Arthrogenic Weakness: inhibited by painful joint (swollen/dysfunctional).
 - Deafferentation: Decrease in afferent input from damaged receptors (joint mechanoreceptors).
 - Pseudoparesis: Clinical presentation from a neuroreflexive origin.
 - Fatigue: neurologic or metabolic.
Sensorimotor System

- Sensory Receptors (mechanoreceptors, muscular receptors and exteroceptors):
 - Integrate feedback and feed-forward mechanisms (balance and walking)
 - Muscle tone (muscle spindle and golgi tendon organ).
- Proprioception:
 - Sole of the feet
 - Sacroiliac joint
 - Cervical spine
- Central Processing:
 - Spinal Level: Fast, involuntary and unconscious.
 - Subcortical Level: Intermediate, automatic and subconscious.
 - Cortical Level: Slowest, greatest control and conscious
- Motor:
 - Alpha: Voluntary motor commands.
 - Gamma: Unconscious muscle length.
 - Facilitation vs. Inhibition.

Proprioception

- Sensory system is **KEY** to proper motor function.
- Leads to recurrent/chronic sprain, microinstability or chronic subluxation (chronic pain ankle, shoulder, knee, back and neck)
- Reduced proprioceptive input from atrophied muscles results in chronic pain and poor postural stability.
- **Compensatory movements for pain or dysfunction eventually become ingrained in the motor cortex, essentially reprogramming normal movement patterns.**
- Global vs. Local:
 - Global compensatory changes muscle firing patterns and local compensatory changes the biomechanics around a specific joint.
Chain Reactions

- Interactions between the skeletal system, muscular system and CNS.
- Dysfunction of any joint or muscle in the body is reflected in the quality and function of the others, not just locally but globally.

- Classifications:
 - Articular
 - Muscular
 - Neurological

Chain Reactions

- Articular:
 - Postural Chains: The position of one joint in relation to another when the body is in an upright position.
 - **Structural**: Positioning of skeletal structures directly influences adjacent structures (cogwheel chain mechanism). Pelvis, vertebral column and rib cage.
 - **Functional**: Postural position of **keystone structures** contribute to pathology. Keystone structures include skeletal structures that serve as attachment points for groups of postural muscles (pelvis, ribs and scapula). 17 muscles originate or insert on the scapula- influencing shoulder girdle and spine.
Chain Reactions

Muscular:
- Synergistic:
 - Works with another muscle (agonist/antagonist) to produce movement and stabilize a joint (ex. Shoulder RTC and scapula stabilizers).
- Slings:
- Extremity:
 - Flexors and Extensors.
 - Gait Cycle.
 - Reciprocal Gait.
- Trunk: Facilitated reciprocal gait patterns between upper and lower extremity and rotation trunk stabilization.
 - Anterior
 - Spiral
 - Posterior

Synergistic:
Myofascial chains: Fascia serves as vital link between multiple muscles acting together for movement. Connection between extremities and trunk.
- Abdominal Fascia
- Thoracolumbar Fascia

Neurological:
- Protective Reflexes (basis for all human movement patterns):
 - Cross extensor and withdrawal reflexes.
 - Locomotion, prehension, mastication and breathing.
- Sensorimotor Chains:
 - Reflexive Stabilization:
 - Functional neurological chain reaction.
 - Muscle contract to provide stability both locally and globally (i.e. anterior weight shift activates posterior dorsal muscles and vice versa).
 - Pelvic Chain: Transverse abdominus, multifidus, diaphragm and pelvic floor.
- Sensorimotor Adaptation Chains:
 - Horizontal (anatomic) Adaptation: Impaired function in one joint or muscle creates a reaction and adaptation in other joint segments (i.e. low back pain resulting in neck pain).
 - Vertical (neurological) Adaptation: Occurs between CNS and PNS. Seen as a change in motor programming that is then reflected in abnormal movement patterns (i.e. ankle instability and altered gait).
- Neurodevelopmental Locomotor Patterns:
 - Tonic Muscle System: prone towards tightness.
 - Phasic Muscle System: prone towards weakness.
 - Work together synchronously through coactivation for posture, gait and coordinated movement
Muscle Imbalance (UCS and LCS)

<table>
<thead>
<tr>
<th>Tonic system muscles prone to tightness</th>
<th>Phasic system muscles prone to weakness</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPPER QUARTER</td>
<td></td>
</tr>
<tr>
<td>Suboccipitals</td>
<td>Middle and lower trapezius</td>
</tr>
<tr>
<td>Pectoralis (major and minor)</td>
<td>Rhomboids</td>
</tr>
<tr>
<td>Upper trapezius</td>
<td>Serratus anterior</td>
</tr>
<tr>
<td>Levator scapula</td>
<td>Deep cervical flexors (longus capitis)</td>
</tr>
<tr>
<td>SCM</td>
<td>Scalenus*</td>
</tr>
<tr>
<td>Scalenus*</td>
<td>Upper-extremity extensors and respirators</td>
</tr>
<tr>
<td>Latissimus dorsi</td>
<td>Dysgynes</td>
</tr>
<tr>
<td>Upper-extremity flexors and pronators</td>
<td></td>
</tr>
<tr>
<td>Musculi</td>
<td></td>
</tr>
<tr>
<td>LOWER QUARTER</td>
<td></td>
</tr>
<tr>
<td>Quadratus lumborum</td>
<td>Rectus abdominis</td>
</tr>
<tr>
<td>Thoracolumbar paraspinales</td>
<td>TrA</td>
</tr>
<tr>
<td>Piriormis</td>
<td>Gluteus maximus</td>
</tr>
<tr>
<td>Illipsoas</td>
<td>Gluteus medius, minimus</td>
</tr>
<tr>
<td>Rectus femoris</td>
<td>Vastus medialis, lateralis</td>
</tr>
<tr>
<td>TFL/T-band</td>
<td>Tibialis anterior</td>
</tr>
<tr>
<td>Hamstrings</td>
<td>Peroneus</td>
</tr>
<tr>
<td>Short hip adductors</td>
<td></td>
</tr>
<tr>
<td>Triceps surae (particularly soleus)</td>
<td></td>
</tr>
<tr>
<td>Tibialis posterior</td>
<td></td>
</tr>
</tbody>
</table>

*The scalenes may be tight or weak.

Upper Crossed Syndrome

- Proximal or Shoulder Girdle Crossed Syndrome.
- Somatic Dysfunctions:
 - OA
 - C4-C5
 - C7-T1
 - Glenohumeral joint
 - T4-T5

Upper Crossed Syndrome

<table>
<thead>
<tr>
<th>Muscles Prone to Tightness</th>
<th>Muscles Prone to Weakness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suboccipitals</td>
<td>Cervical flexors</td>
</tr>
<tr>
<td>Upper Trapezius</td>
<td>Rhomboids</td>
</tr>
<tr>
<td>Levator Scapula</td>
<td>Lower Trapezius</td>
</tr>
<tr>
<td>Pectoralis Major</td>
<td></td>
</tr>
<tr>
<td>Pectoralis Minor</td>
<td></td>
</tr>
</tbody>
</table>
Lower Crossed Syndrome

- Distal or Pelvic Crossed Syndrome.
- Somatic Dysfunctions:
 - L4-L5
 - L5-S1
 - SI joint
 - Hip joint

Layer Syndrome

- Combination of UCS and LCS.
- Older Adults.
- Unsuccessful Spinal Surgery.
- Poor Prognosis
Musculoskeletal Pain

- **Centralization:**
 - Patients with chronic MSK pain in fibromyalgia and low back pain exhibit altered pain processing throughout the body.

- **Painful Stimuli:**
 - Inhibitory effect on muscle activation.

- **Pain adaptation Model:**
 - Decrease in EMG activity of the agonist and increase in EMG activity of the antagonist muscle. In addition, there is decreased in strength, range, and velocity of movement.

Figure 4.1 The chronic musculoskeletal pain cycle presented from a neurological perspective.

Why?

Americans sit 8-10 hours a day.
Pain Syndromes

- Cranium:
 - Temporomandibular Disorders (SCM/Masseter; increased forward head posture).
 - Tension headaches.
- Cervical:
 - C5-C6 (Osteophytes on x-ray).
 - Neck pain from trapezius and levator scapula hypertonicity.
- Upper Extremity:
 - Shoulder Instability (elevated and protracted).
 - Impingement/RTC tendinosis
 - Thoracic Outlet Syndrome
 - Dorsal Scapular Nerve Impingement

Shoulder

- Instability and Impingement:
 - Stability:
 - Rotator Cuff
 - Joint Capsule (proprioceptive fibers)
 - Trapezius:
 - Lower Trapezius Inhibited= loss of deltoid length-tension relationship and overuse of RTC muscles.
 - Scapula:
 - Scapular Rotator Force Coupling:
 - Upper Trapezius, Lower Trapezius, Rhomboids and Serratus.
 - Pseudoparesis of Lower Trapezius and Rhomboid= scapular elevation and downward tilt=increased impingement.
 - Chain Reaction:
 - 50% of total force in overhead throwing comes from the legs and trunk.
 - Elevation of right shoulder→ contralateral erector spinae and lower extremity.
Pain Syndromes

- Lumbar:
 - Low Back Pain
 - SI Joint Dysfunction
 - Gluteus maximus and contralateral erector spinae (stabilizers).
 - Gluteus muscles are inhibited with SI joint dysfunction with spasm of iliacus, piriformis, and QL (Pelvic shift).

- Lower Extremity:
 - Groin pain and injury (abdominal weakness)
 - Hamstring Strain
 - ITB Syndrome (increase in demand to stabilize/hip abductor weakness).
 - Patellofemoral Pains Syndrome (AKP)- vasti and hip weakness.
 - Knee OA.
 - Ankle Sprains and Plantar Fasciitis.
 - Fibromyalgia/Myofascial Pain Syndromes
Trapezius Trigger Points

Pectoralis Trigger Points
Levator and Periscapular Trigger Points

- Functional movement is never isolated; requires several muscles acting as prime movers, synergists or stabilizers.

6 Basic Movement Patterns:
- Hip Extension
- Hip Abduction
- Curl-up
- Cervical Flexion
- Push-up
- Shoulder Abduction
Movement Patterns

- **Hip Extension:**
 - Hamstring, gluteus maximus, contralateral erector spinae and ipsilateral erector spinae.
 - Delayed/absent gluteus maximus or anterior pelvic tilt with hyperlordosis are a positive test.

- **Hip Abduction (20 degrees):**
 - Pelvis stabilizers during gait.
 - Gluteus medius, gluteus minimus and TFL are prime movers; QL and abdominal muscles are stabilizers.
 - Hip flexion (not pure abduction) indicates TFL tightness.
 - QL initiates hip abduction with gluteus weakness.

- **Trunk Curl-up:**
 - During trunk curl up the upper trunk should round, lower back flattens and the pelvis tilts posteriorly.
 - Hip flexor motion will be associated with little to no curling of upper trunk and anterior pelvic tilt.
 - Early loss of pressure under heels is another sign.

Table 6.1 Key Indicators for Janda’s Movement Tests

<table>
<thead>
<tr>
<th>Movement Test</th>
<th>Key Indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hip extension</td>
<td>Decreased gluteus maximus bulk
Increased hamstring bulk
Obstruction of spinal horizontal grooves or creases
Anterior pelvic tilt
Increased or asymmetrical paraspinal bulk
Decreased trailing limb posture at terminal stance during gait</td>
</tr>
<tr>
<td>Hip abduction</td>
<td>Lateral shift or rotation of pelvis
Asymmetrical height of iliac crest
Observation of adductor notch
Adducted hip or varus position
Increased lateral IT groove
Positive result on single-leg stance test
Trunk flexion sign or increased lateral pelvic shift during loading response during gait</td>
</tr>
<tr>
<td>Trunk curl-up</td>
<td>Decreased abdominal tone
Lateral grooves in abdominal wall
Impaired respiration
Pneumothorax</td>
</tr>
<tr>
<td>Cervical flexion</td>
<td>Prominence of sternocleidomastoid at mid-to-distal insertion
Forward head posture
Increased angle (>90°) between chin and neck
Impaired respiration</td>
</tr>
<tr>
<td>Push-up</td>
<td>Forward head with protracted shoulders
Increased internal rotation of arms
Neck that faces out superiorly and laterally (in males)
Scapula winging, tipping</td>
</tr>
<tr>
<td>Shoulder abduction</td>
<td>Forward head with protracted shoulders
Glochic shoulder
Levator notch
Scapula winging, tipping</td>
</tr>
</tbody>
</table>
Muscle Firing Patterns

Hip Extension Monitoring

<table>
<thead>
<tr>
<th>Muscle</th>
<th>Monitoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Hamstring</td>
<td>Caudal Middle Finger</td>
</tr>
<tr>
<td>2. Gluteus Maximus</td>
<td>Caudal Thumb</td>
</tr>
<tr>
<td>3. Contralateral QL</td>
<td>Cephalad Middle Finger</td>
</tr>
<tr>
<td>4. Ipsilateral QL</td>
<td>Cephalad Thumb</td>
</tr>
<tr>
<td>5. Contralateral E. Spinae</td>
<td></td>
</tr>
<tr>
<td>6. Ipsilateral E. Spinae</td>
<td></td>
</tr>
</tbody>
</table>

Muscle Firing Patterns

Hip Abduction Monitoring

<table>
<thead>
<tr>
<th>Muscle</th>
<th>Monitoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. TFL</td>
<td>Caudal Thumb</td>
</tr>
<tr>
<td>2. Gluteus Medius</td>
<td>Caudal Middle Finger</td>
</tr>
<tr>
<td>3. QL</td>
<td>Cephalad Thumb</td>
</tr>
<tr>
<td>4. Erector Spinae</td>
<td>Cephalad Middle Finger</td>
</tr>
<tr>
<td>5. Contralateral E. Spinae</td>
<td></td>
</tr>
</tbody>
</table>
Movement Patterns

- **Cervical Flexion:**
 - Primary deep flexors are longus capitis, longus colli, and rectus capitis anterior.
 - SCM and anterior scalene are superficial flexors.
 - Compensation by SCM and scalene will result in the chin or jaw jutting forward (OA extension) during cervical spine flexion.

- **Push-up:**
 - Force coupling between trapezius and serratus anterior necessary for scapula stabilization.
 - Excessive scapular elevation, tipping, winging, adduction or abduction.

- **Shoulder Abduction:**
 - Deltoid, rotator cuff, upper trapezius and levator scapula.
 - Elevation of shoulder girdle before 60 degrees of abduction is a positive test.
 - Contralateral side-bending of trunk to initiate abduction.

Treatment Approaches

- **Ergonomics**
 - Change habit that is causing or facilitating dysfunction.

- **Somatic Dysfunction/OSE:**
 - OA
 - C4-C5
 - C7-T1
 - Glenohumeral joint
 - T4-T5
 - L4-L5
 - L5-S1
 - SI joint
 - Hip joint

- **Strengthening and stretching:**
 - Joint Mobilization (ROM exercises vs. Soft Collar)
 - Stretch and lengthen tight muscles while simultaneously strengthening weak muscles.

- **Proprioception/Sensorimotor system:**
 - CNS involved in muscle imbalance.
 - Proprioceptive changes further facilitate dysfunction.
Upper Crossed Syndrome

- Balance lower trapezius/rhomboids and pectoralis minor:

Stretching

- Iliopsoas
- Rectus Femoris
- Hamstrings
- Piriformis
- Adductors
- Gastroc-soleus complex

Strengthening

- Gluteus Medius, Minimus and Maximus
- Rectus Abdominis
Gluteus Medius

Gluteus Maximus
Abdominal Muscle
(Sit Backs)
References

- Hoppenfeld, S. *Physical Examination Spine and Extremities*. Prentice Hall.
- http://www.physio-pedia.com/Lower_crossed_syndrome