Anemia Approach for the Primary Care Physician

David Seastone, DO, Ph.D.
UPMC/AHN Regional Cancer Center

A 54 year old man with many medical comorbidities including HTN, HPL, CAD, DM, RA is found to have a hemoglobin of 10.4 on routine laboratory studies. His symptoms include general fatigue and he has no symptoms or family history of blood disease. PE is significant for conjunctival pallor, a prominent S4 on cardiac exam and venous stasis markings in his lower extremities.

What is the next step?
Anemia

• Reduction of RBC concentration below normal limits
 • Decreased Hb concentration (< 11.5 g/dL)
 • Decreased RBC count
 • Usually decreased hematocrit (cellular blood)
• Can be symptomatic or asymptomatic
• Symptoms
 • Fatigue
 • Dyspnea
 • Macroglossia
 • Pallor

Anemia

Problems in the production of blood cells
 • Decreased hematopoiesis

Increased destruction or loss of blood cells
 • Blood loss
 • Hemolytic anemias
Initial Work-up for anemia: considerations

- Bleeding (past or present)?
- Iron Deficiency?
- B12/folate deficiency?
- RBC Destruction?
- Bone marrow suppressed?

Anemia of blood loss

- Acute blood loss – no time for compensation
 - Hemorrhage - may lead to hypovolemic shock
 - Loss of total blood volume more important than acute loss of hemoglobin
 - CBC initially normal (usually)
 - CBC drops over time and when IVF are given

- Chronic Blood Loss – body can compensate if able
 - Usually GI tract or uterine bleeding
 - Causes anemia only if blood loss >> capacity of bone marrow to replace lost RBCs
 - Intrinsic bone marrow diseases or nutritional deficiencies
 - Vitamin B12, Folate, Iron, Pyridoxine, Protein imbalance
Anemia of decreased RBC production

- **Differential Diagnosis:**
 - Iron Deficiency
 - Vitamin B12 Deficiency
 - Folic Acid/Folate Deficiency
 - Anemia of Chronic Disease
 - Anemia of Bone Marrow Stem Cell Failure
 - Primary failure
 - Secondary failure from malignancy

History IS important!

- History of comorbidities that are contributory
 - GI Bleeding, Renal Failure, Autoimmune disease, Chronic inflammation
- B symptoms: fever, chills, night sweats, unintentional weight loss
- Is anemia recent or long-standing?
- Symptoms: fatigue, dyspnea, somnolence, pica, ice craving
Physical Exam – still useful

- Pallor of conjunctiva: 50-70% reliable
- Jaundice
- Lymphadenopathy
- Hepatomegaly/Splenomegaly
- Bone tenderness: especially over sternum

Laboratory evaluation: go straight for the gusto

<table>
<thead>
<tr>
<th>Component</th>
<th>Latest Read</th>
<th>12/21</th>
</tr>
</thead>
<tbody>
<tr>
<td>WBC</td>
<td>3.70 - 11.00 k/uL</td>
<td>9.89</td>
</tr>
<tr>
<td>RBC</td>
<td>3.80 - 5.20 m/uL</td>
<td>4.83</td>
</tr>
<tr>
<td>Hemoglobin</td>
<td>11.5 - 15.5 g/dL</td>
<td>14.5</td>
</tr>
<tr>
<td>Hematocrit</td>
<td>36.0 - 46.0 %</td>
<td>42.1</td>
</tr>
<tr>
<td>MCV</td>
<td>28.0 - 100.0 fL</td>
<td>92.9</td>
</tr>
<tr>
<td>MCH</td>
<td>30.0 - 34.0 fL</td>
<td>32.0</td>
</tr>
<tr>
<td>MCHC</td>
<td>38.5 - 36.0 g/dL</td>
<td>34.4</td>
</tr>
<tr>
<td>RDW/CV</td>
<td>11.5 - 15.0 /L</td>
<td>12.1</td>
</tr>
<tr>
<td>Platelet Count</td>
<td>150 - 400 k/uL</td>
<td>265</td>
</tr>
<tr>
<td>MPV</td>
<td>0.6 - 12.7 fL</td>
<td>10.7</td>
</tr>
<tr>
<td>Neut%</td>
<td>39.5 - 74.0 %</td>
<td>58.4</td>
</tr>
<tr>
<td>Abb: Neut (ANC)</td>
<td>1.45 - 7.63 k/uL</td>
<td>5.31</td>
</tr>
<tr>
<td>Lymph%</td>
<td>15.9 - 30.2 %</td>
<td>22.6</td>
</tr>
<tr>
<td>Abb: Lymph</td>
<td>1.00 - 4.00 k/uL</td>
<td>2.96</td>
</tr>
<tr>
<td>Mono%</td>
<td>8.0 - 12.0 %</td>
<td>0.6</td>
</tr>
<tr>
<td>Abb: Mono</td>
<td>0.00 - 0.86 k/uL</td>
<td>0.48</td>
</tr>
<tr>
<td>Eosin%</td>
<td>0.0 - 6.6 %</td>
<td>0.2</td>
</tr>
<tr>
<td>Abb: Eosin</td>
<td>0.00 - 0.45 k/uL</td>
<td>0.22</td>
</tr>
<tr>
<td>Baso%</td>
<td>0.0 - 1.2 %</td>
<td>0.2</td>
</tr>
<tr>
<td>Abb: Baso</td>
<td>0.00 - 0.18 k/uL</td>
<td>0.04</td>
</tr>
<tr>
<td>Diff Type</td>
<td>All</td>
<td></td>
</tr>
</tbody>
</table>
Typical peripheral blood smear

Other Cell Types
Microcytic/Hypochromic Anemia

Important initial laboratory studies

• Hemoglobin/Hct
• MCV
• RDW (variability in RBC size)
• Iron
• TIBC
• Transferrin saturation
• Ferritin

• Reticulocyte count
• LDH
Iron Deficiency

- Most common etiology of microcytic, hypochromia
 - 11 million cases per year in US

- Iron loss from chronic bleeding
 - Menstrual blood loss (reproductive age women)
 - GI bleeding (age >50 in men or woman)

Iron Deficiency

- Most common nutritional disorder throughout world
 - 80% of Fe$^{2+}$ found in Hb
 - 20% found in myoglobin, cytochromes, catalase, others

- Fe Storage Pool: Ferritin and Hemosiderin
 - Ferritin: Protein-Fe complex found mostly in liver, spleen, bone marrow and skeletal muscle
 - Hemosiderin: Brown pigment in macrophages
Iron deficiency

• Laboratory Tests for Fe:
 • Serum Fe: concentration of tranferrin-bound iron
 • Ferritin: proportional to total body Fe stores
 • Total Iron-Binding Capacity: amount of iron carried by blood
 • %Transferrin Saturation: iron/TIBC x 100

• Usual results in iron deficiency anemia:
 • Serum Fe: Decreased
 • Serum Ferritin: Decreased

Treatment

• Ferrous sulfate 325 mg (65mg of elemental iron)
 • Daily, BID, TID depending on degree of deficiency

• Niferex – polysaccharide-coated 150mg
 • Daily, BID, TID depending on degree of deficiency

• Liquid Iron - $$$

• Side-effects: aversion, nausea, constipation, dark stools
Parenteral Iron Infusion

- Iron dextran – INFED
- Ferric gluconate – Ferrlecit
- Iron sucrose – Venofer
 - Only formulation with robust data in pregnancy
- Ferric carboxymaltose – Injectafer
 - Most convenient (30 minute infusion x 2 weekly doses)
- Ferumoxytol – Feraheme

- Any formulation can cause adverse reactions
 - Local infusion reactions → anaphylaxis

B12/folate Deficiency

- Megaloblastic/macrocytic anemia:

- Vitamin B12/Cobalamin:
 - Requires intrinsic factor for absorption
 - IF is secreted by parietal cells in stomach
 - IF/B12 complex is absorbed in the terminal ileum (last 100cm)
 - GI surgery or IBD
 - Neuropathy can be present

- Folic Acid/Folate Deficiency:
 - Usually a nutritional problem (alcoholism)
 - Pregnancy
Vitamin B12/Folate deficiency: Hypersegmented neutrophils

More rare, but always a possibility...

- Thalassemia
- Sickle-cell anemia

- Hemoglobin electrophoresis is used to diagnose
Sickle-cell Anemia

Hemoglobin Structure
Thalassemias

• Decreased production of globin chains

 • \(\alpha\)-Thalassemias: decreased rate of production of \(\alpha\)-globin chains
 • Usually seen in patients of Asian descent

 • \(\beta\)-Thalassemias: decreased rate of production of beta-globin chains
 • Usually seen in patients of African/Mediterranean descent

Target Cells
Anemia of chronic disease

• Anemia of Chronic Disease: Chronic inflammatory diseases may impair the handling of iron in the body

• 3 Major Categories of Inflammatory Diseases:
 • Autoimmune Disorders: collagen vascular diseases, IBD, general inflammation
 • Malignant Neoplasms
 • Infectious Diseases: osteomyelitis, bacterial endocarditis, lung abscess

Anemia of chronic disease

• Defect of iron incorporation into Hb molecules during erythropoiesis:
 • Problem in mobilizing Fe from storage pool

• Usually normocytic,normochromic
 • Serum Fe: Decreased/Normal
 • Serum ferritin: Normal/Increased (inflammation)
 • Total Iron-binding capacity (TIBC): Decreased
 • Transferrin saturation: Normal or decreased
Anemia of Chronic Disease Mechanism: Hepcidin

- Low Hepcidin
- Inflammation: High Hepcidin

Anemia of Chronic Disease

- Erythropoietin level is important
 - Often inappropriately low/normal
 - May indicate renal disease

- Can use erythropoietin stimulating agents to boost Hb
 - Procrit (recombinant erythropoietin)
 - Aranesp (darbepoietin) – fragment of recombinant erythropoietin
No Solution?
Time to get the Hematologist involved....

- Not usually necessary
- Not as bad as most people think
 - Usually an outpatient procedure that lasts 15-20 minutes

In all honesty......

- Bone Marrow biopsy usually only employed when
 >2 cell lineages are depleted with no good clinical explanation
 - RBC
 - WBC
 - Platelets
Hypocellular bone marrow

Hypercellular bone marrow
Malignancy of bone marrow

- Leukemias
- Lymphomas
- Myeloma
- Myelofibrosis
- Metastatic bone disease

MGUS --> myeloma....can be sneaky

- Elevated Protein/albumin ratio in CMP can be clue
- Elevated gamma globulins can be a clue

- Check SPEP (serum protein electrophoresis)
 - Looks for a monoclonal protein being made by malignant plasma cells
Rare causes of anemia

• Aplastic Anemia
 • May occur at any age and no gender preference
 • Hypocellular bone marrow
 • Almost no maturing myeloid cells

• PNH (paroxysmal nocturnal hemoglobinuria)
 • Loss of CD55/CD59 on RBCs (normally inhibit complement)
 • Leads to activation of terminal complement (C5-9)
 • Eculizumab is treatment

• Pure Red Cell Aplasia:
 • Rare form of bone marrow failure leading to erythroid aplasia only
 • granulopoiesis and thrombopoiesis are not affected

Hemolytic Anemia: Increased destruction

• RBCs usually live for 120 days

• Causes
 • Mechanical Injury (valves)
 • Autoimmune complement fixation on surface membrane
 • Exogenous toxic Factors (medications)
 • RBC membrane abnormalities
 • Enzyme abnormalities
Hemolytic anemia

- Clinical picture
 - Anemia symptoms (fatigue, dyspnea)
 - Jaundice (destruction of Hb \rightarrow bilirubin)
 - Sometimes hepatomegaly/splenomegaly

- Laboratory picture
 - Decreased Hb
 - Decreased haptoglobin (binds Hb to prevent toxicity)
 - Increased LDH (lactate dehydrogenase)
 - Increased Reticulocytes (immature RBCs)

Hemolytic Anemia

- Autoimmune Hemolytic Anemia (AIHA)
- Warm vs Cold (usually warm)

- Presence of Ig on the surface of RBCs
 - Autoantibodies
 - Coomb’s positive (Direct anti-globulin test)
Autoimmune Hemolytic Anemia (AIHA)

Cold Agglutinin Immune Hemolytic Anemia

- IgM auto-antibodies bind to RBCs
 - IgM is pentameric and binds best at low temps
 - Exacerbated in winter months in northern climates

- Associations:
 - MGUS (monoclonal gammopathy of unknown significance)
 - Lymphoma, CLL
 - Infections (Adenovirus and Mycoplasma pneumoniae)
Hemolytic Anemia: Hereditary spherocytosis

- Inherited disorder of erythrocytes
- Abnormal membranes and shape of RBCs
 - Mutated Spectrin, ankyrin, band 3 protein, or protein 4.2
- Spherocytes less deformable, therefore more likely to be sequestered in splenic sinusoids
- Seen most commonly in Northern European descendants (1 in 5,000)
 - Usually autosomal dominant

Spherocytes
Hemolytic Anemia: Glucose-6-Phosphate Dehydrogenase Deficiency:

- Key enzyme in the hexose monophosphate shunt (HMP)
- Deficiency causes oxidation of globin chains which leads to denatured hemoglobin (Heinz bodies)
- Deficiency is present in ~10% of African-Americans or those of Mediterranean ancestry
 - Autosomal recessive inheritance
 - Variable phenotypic expression of the disease
- Usually caused by infection or drug exposure
 - Anti-malarial
 - Sulfa-drugs

Heinz Bodies (G6PD Deficiency)
Bite Cells in G6PD Deficiency

Other Diseases associated with hemolysis

• HELLP – pregnant women
• HUS – bacterial infections
• TTP – thrombotic thrombocytopenic purpura
Microangiopathic Hemolytic Anemia

Anemia Summary

- **Cause:** Bleeding, poor production, destruction
- **History and Exam** are important clues
- **Laboratory evaluation** can confirm or lead to further etiologies
- **Primary care role:** assess common causes
 - Bleeding, iron and folate/B12 deficiency, consider chronic disease anemia
 - Erythropoietin can be helpful
- If unexplained or more than 1 cell line is decreased (WBC, RBC, platelets) refer to hematology for further consideration
Thank You!