The Language of Fractures and Dislocations: How to Describe an X-ray to an Orthopedic Surgeon Over the Phone

Goals and Objectives

Goal 1: Improve participant understanding of and ability to read basic fractures and dislocations on plain film x-rays.

Objectives: At the end of this lecture, participants should able able to:

-Determine and accurately name the fractured bone and / or dislocated joint -Identify the specific location of the fracture and / or dislocation. -Describe the basic characteristics of the fracture and / or dislocation.

Goal 2: Augment participant's communication with orthopedic colleagues regarding radiographic findings, to enhance diagnostic accuracy and improve overall patient outcomes.

Objectives: At the end of this lecture, participants should able able to:

- Succinctly describe several radiographic examples of basic fractures and / or dislocations.

- Correctly answer 2-3 questions pertaining to the description of fractures and/or dislocation(s) as noted on plain radiographs.

Disclosures

The presenter has no relevant financial relationships to be discussed, directly or indirectly, referred to or illustrated with or without recognition within this presentation.

Appropriate Imaging

- "One view is no view". Need orthogonal imaging (at least 2) to appropriately read & interpret x-rays. These views may differ per joint / bone being imaged.
- -Shoulder: (AP, true AP, scapular Y, axillary)
- -Knee: (AP, lat, oblique, merchant)
- -Ankle (AP, lat, mortise)
- -Wrist (AP, lat, oblique, carpal tunnel, scaphoid)
- -Elbow (AP, lat, oblique, radial head / Greenspan)

Image joint above and below injury.

Classification

- In 1958 Swiss surgeons founded the AO (Arbeitsgemeinschaft für Osteosynthesefragen/ Association for the Study of Internal Fixation) in order to the care for musculoskeletal injuries.
- Müller AO Classification of fracture published in 1987 by the AO Foundation.
 - Classifies fractures by location, type, and provides relative prognosis of severity.
 - Very complicated and cumbersome
- General rule is to describe what you see utilizing common verbiage and terminology.

Mnemonic for identifying and describing fractures: OLD ACID

- O: Open vs. closed
- L: Location
- D: Degree (complete vs. incomplete)
- A: Articular extension
- C: Comminution / Pattern
- I: Intrinsic bone quality
- D: Displacement, angulation, rotation

D: Displacement, Angulation, Rotation

Displacement

- Extent to which Fx fragments are not axially aligned
- Fragments shifted in various directions relative to each other
- Convention: describe displacement of distal fragment relative to proximal.

Complete, oblique tibial shaft fracture between distal & middle thirds; laterally displaced

D: Displacement, Angulation, Rotation

Angulation

- Extent to which fracture fragments are not *anatomically* aligned
 - In an angular fashion
- Convention: describe angulation as the direction the *apex* is pointing relative to anatomical long axis of the bone (e.g. apex medial, apex valgus), *or* direction of distal segment.

 R tibial shaft fracture between proximal & middle thirds, angulated apex lateral (varus angulated)

D: Displacement, Angulation, Rotation

Rotation

- Extent to which fracture fragments are rotated relative to each other
- Convention: describe which direction the *distal* fragment is rotated relative to the proximal portion of the bone
 ex: internal (towards midline) vs external (away from midline) rotation

Alternative Mnemonic: BLT LARD

- B: Identify Bone
- L: Location on bone
- T: Type of fracture
- L: Length changes
- A: Angulation
- R: Rotation
- D: Displacement

Other signs of fractures

● Fat pad sign / "Sail sign"

<u>Anterior fat pad</u>: Shallow coronoid fossa. Sensitive but not specific to fracture.

<u>Posterior fat pad</u>: Deeper olecranon fossa, less senstive but > 70% specific for true fracture.

Common Fracture Names and Eponyms	
Jones'	Maisonneuve
Barton's	Monteggia
Bankart	Segond
Bennet	Pellegrini-stieda
Rolando	Smith's
Boxer's	Tillaux
Colles'	Lisfranc
Galleazzi	Jefferson
Essex-Lopresti	Chance

Joint Dislocations

Dislocation: Abnormal separation / discontinuity in a joint.

Subluxation: A partial / incomplete separation of a joint.

Same rules apply: Identify joint(s) involved in dislocation, determine direction of dislocation, and any associated fractures.

Description of Dislocations

Described by position of distal bone in relation to the proximal bone.

- -Anterior (volar)
- -Posterior (dorsal)
- -Medial
- -Lateral
- -Any combination

